

Poster # 1

Alnezary FS, Almutairi MS, Fallatah SB, Alam MJ, Begum K, Lancaster C, Gonzales-Luna AJ, Garey KW Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy

BACKGROUND

- Clostridioides difficile infection (CDI) is an urgent public health threat worldwide and a significant financial healthcare burden (1)
- Primary CDI treatments include vancomycin or fidaxomicin; however, disease recurrence after antibiotic therapy is increasing, which makes development of novel therapeutics is essential for treatment of CDI (2)
- Several animal models have been developed to study various aspects of CDI, including *C. difficile* pathophysiology, colonization, recurrence, efficacy testing of new antibiotics and the impact of strain variability (3)
- Animals that have been utilized to study CDI include mice, hamsters, rats, rabbits, hares, guinea pigs, and prairie dogs (3)
- Conducting experiments with these infection models is costly, time-consuming, and require extensive ethical consideration
- The invertebrate model *Galleria mellonella* has become an attractive alternative to other in vivo models in infectious diseasesrelated research, including bacterial and fungal virulence, viral infections, and antimicrobial screening and testing (4)
- This popularity is attributed to its low cost, short life cycle, easy handing, and simple ethical considerations (4)
- The data supporting the use of *G*. *mellonella* to study CDI is limited

OBJECTIVE

This study investigated the feasibility of using G. mellonella as a surrogate insect model to study CDI pathogenesis

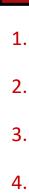
An Invertebrate Model to Study *Clostridioides difficile*

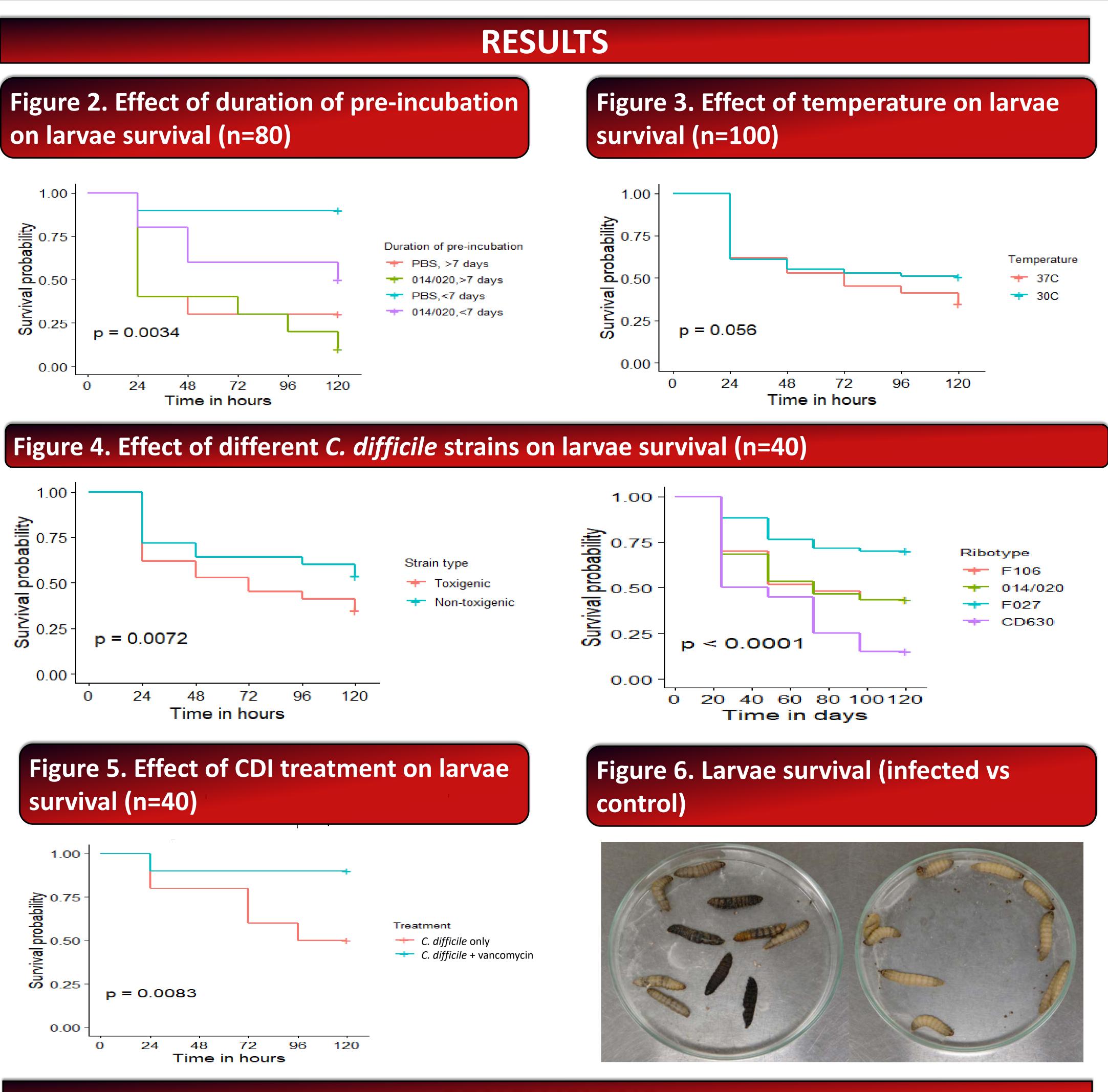
METHODS

Development stage

- Median lethal dose (LD50) : Larvae were gavaged (force fed) with 1x10²⁻⁶ colony forming units (CFU) of *C. difficile* ribotype (RT) 014-020 strain (MT-5313)
- Duration of pre-incubation: Larvae were gavaged with 1x10⁵ CFU of *C. difficile* RT 014-020 and Phosphate-buffered saline (PBS). The experiment was done on fresh (0-7 days) and old (>7days) larvae
- Optimal growth temperatures: Larvae were gavaged with 1x10⁵ CFU of *C. difficile* RT 014-020 and incubated at 30°C and 37°C and monitored for 120 hours

Validation stage


- *G. mellonella* larvae (n=10/experiment) were gavaged with 1x10⁵ CFU using several C. difficile RT strains (RT027, RT106, RT014/020, RT012)
- Larvae were assigned into the following arms and experiments were repeated in duplicate:
 - 1. Negative control (PBS only), n = 20
 - 2. Positive control (clinical *C. difficile* isolates; n = 10 for each strain), n = 180
 - 3. Positive control (standard *C. difficile* isolates (R20291, CD630); n = 10 for each strain), n = 40
- In all experiments, larvae were kept at 37°C post-infection and monitored daily for 120 hours for survival


Figure 1. Gavaging of *G. mellonella*

CONCLUSIONS

- G. mellonella larvae can be utilized as a pre-clinical model to study the effect of antibiotic treatment
- This high-throughput model will be used for future pharmacology studies investigating pharmacokinetics and pharmacodynamics of antibiotics in development for CDI

REFERENCES

Guh AY, Mu Y, Winston LG, et al. Trends in U.S. Burden of Infection and Outcomes. N Engl J Med. 2020;382(14):1320-1330. Kelly CP, LaMont JT. *Clostridium difficile*-more difficult than ever. *N Engl J Med*. 2008;359(18):1932-1940. Hutton ML, Mackin KE, Chakravorty A, Lyras D. Small animal models for the study of *Clostridium difficile* disease pathogenesis. *FEMS Microbiol Lett*. 2014;352(2):140-149. Champion OL, Wagley S, Titball RW. Galleria mellonella as a model host for microbiological and toxin research. *Virulence*. 2016;7(7):840-5.

Contact Information: Faris Alnezary University of Houston College of Pharmacy Phone: (713) 743-1239 Email: falnezar@central.uh.edu